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Let Z% denote the lattice of integer-valued vectors of

Rk = (ky,....kgy) € Z% s € N, p € N, V., =
{j WA (—1p < <kp’. l=1,.... d} . The hi-

erarchical distance d,(7,7), i,j € Z 4 over Z4 is defined as
dy(i.j) = p*™) if i # j; s(i.j) = min{s : there is & such
that i € Vis, j € Vis}. The lattice Z 4 endowed with hi-
erarchical distance d,(z, j) will be called the d-dimensional

hierarchical lattice A.






The fermionic hierarchical model on the hierarchical lat-

H(%a) = % dy®(i, )[01(i)en(f) + vali)ve())]+

1,7€N

e\

where
L™ (i);r, g) = r (V1(i)n(i) + vali)a(i)) +

g ()01 (1)1 (1) 1a(0).



Four-component spins 1*(i) = (¢1(),01(2), ¢a(i), 1a(i)),
whose components are the generators of the Grassmann

algebra, are located at the nodes of this lattice.

[t 1s convenient to use the concept of the Grassman-

alued “density” of the free measure

f(v*) = exp{=L(":7.9)}

instead of the lagrangian L(v*; 7, g).



In the general case, the "density” of the free measure is
olven by
F07e) = co+ (11 + Powia) + cotrhibathy,

c=(cp.c1,09) € R3. 1f ¢ # 0 ( the regular case), then the

coupling constants r and g are related to ¢ by the formulas

& C% — Cneo

re) = ——, C) =
(€)== 9 2




[f cg = 0 (for instance, as in the case where the density
is given by the Grassmann o-function o(v*) = Un9the),
then the exponential representation is impossible.

The triple (cg, ¢, co) can be naturally treated as a point
in the two-dimensional real projective space RP? because
two triples that differ by a nonzero factor represent the

same (ibbs state.



The block-spin transformation of the Kadanoft-Wilson

renormalization group (RG) is defined by the formula

ra)ut (i) =p~ 5 0*().

7€Via
where av is renormalization group parameter.
The Gaussian part of the model Hamiltonian is invariant

under this RG transformation RG.



In the non-Gaussian it reduces to the to the transtorma-

tion R(«) of the coupling constants R(a)(r.qg) = (. ¢).

'TJ _ /\( (T —I_ 1)2 o g
(r+1)?—g/n
2

/ A’ ('T‘—I—l) — g
g = ((r +1)? g/n) g

.n = pis the size of the elementary cell

(?+1)1).

where \ = po—¢

of the hierarchical lattice A.



The RG transformation in the space of the free mea-

sure "density” is also denoted by R(a): R(«)(co, €1, 09) =
(e s ch).
/ 2 1 2
o= |(cr—co)”+ —(coca — 1) |

Cfl =\ ((Cl — Co)(CQ — Cl) + %(C[}CQ — (‘%)) :

1
Cy = A\ ((CQ —c1)? + E(C[}CQ — (‘%)) .



The RG transtormation in the c-space seems more aes-
thetic and allows visualizing the picture of the dynamics
in the entire space because the projective space is compact
and allows eliminating some singularities in (r, g) coordi-
nates. Indeed, the first map is not defined at the points of
the critical parabola g = n(r+1)%, but formulas of the RG
transformation in the ¢ space allow defining it. Points of
the critical parabola under the first iteration of RG map go
to the non-regular domain, but under the second iteration

they return to the regular domain.



The transformation R(«) has the trivial (Gaussian) fixed
point (0, 0) and two non-Gaussian fixed points in the (r, g)
coordinates. In the ¢ coordinates, the Gaussian point can
be written as (1,0,0), and one more fixed point (0,0, 1)
can be seen, given the Grassmann o function o(v*) =

U11019009. We denote this fixed point .



The RG transformation has two regular non-Gaussian
fixed points that for a # d are given in the (7. g) coordi-

nates by the formulas:
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Traiectories of "+ " and "- " fixed points in (r,o)- plane



The map R(«) itself, like the map from RP? to RP?, is
well defined everywhere except the point (1, 1.1) because
R(a)(1,1,1) = (0,0,0). It is given by the coordinates
(—1,0) in the (r, g) plane. We call this point the singular

point of the RG transformation.



One can see, that Grassmann Fourier transform trans-

poses the coefficients cq, ¢1, ¢o of the density f(n*; co, c1, c2):
Fopoes(f(n7 o, 01, 02)) =

= [exp{—(&1m + &amp + &1 + &) }

= f(; 9, c1, ).



[t 1s easy to verify commutation on relation

Therefore 1t is sufficient to investigate the case o > d.

Hereafter, we assume that a > d.



We consider the realization of the projective ¢ space in

the form of the hemisphere
S ={(co,c1,00) 1§+ G+ 5= 1,¢9 > 0},

where the opposite points of the boundary circle c% +c§ =1
are identified. To obtain the flat (two-dimensional) pic-
ture, we use the orthogonal projection S on the disk D =

{(c1.09) f 43 < 1}.



The regular point (7. g) then corresponds to (¢1(r. g). co(7. g)).

-
JI+7r2+(r2—g)%
r2_ g
J14+ 72+ (r2—g)?
We note that the points (¢q(7, g). co(r, g)) belong to the

Cl(r"n: g) —

CQ(T: g) —

interior of the disk D. The trivial fixed point r =0, g = 0
is also represented by the point (0.0) in the (¢q. ¢9) coor-
dinates. The fixed point 0 in (cy. ¢9) coordinates is deter-

mined by the point (0, 1).



The line g = 0 in the (1, c9) space is described by the
curve lp = {(c1(r.0).co(r,0));r € R}. Completing the
curve o with the limit point (0, 1), we obtain a closed
curve [. The lower half plane {(r,g) : g < 0} is given in
the (c1, ¢o) space by the region D bounded by the curve
[. The upper half-plane {(r,¢g) : g > 0} is mapped to the

interior part of the domain D \ Dj.



The Fig.3 demonstrates the disk D and the attraction
domains of the fixed point 6 = (0,1) when o = 1,7, p = 2,
d = 1. Almost all points of D\ Dy are attracted to the
fixed point . The points are colored red if they tend to ¢
from the left. The points are colored blue if they tend to o
from the right. The singular point is marked by the cross.
In the red zone we see a large domain A(0) and countable
series of nonintersecting subsets A(1), A(2), A(3), (satellite

domains) .



B

Fig.3

Signes "+, "-", 0,1 indicate the locations of "+, "-", trivial Gauzsian fixed poirtz and fixed point at infinity
carrespandingly in projective coordinates, "x" indicates the location of singular point, ather five points are pairts

of the 2-nd and 3-rd arder cycles. Yellow and green parts are RG-invariart sets of the domain which correszponds
to the loweer half-plane in (r g)-coordinstes.
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Enlarged picture of the square, selected on the Fig.3
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Enlarged picture of the sguare, selected on the Fig.4



In turn, every of domains A(i).7 = 1,2, has its own
(satellite) countable series of nonintersecting subsets A(z, 7)., 7 =
1.2, and so on. If point belongs to zone A(iy.i9..1;)
and 7; > 1, then after one RG-iteration it goes to zone
Ay — 1,149, ,1). If 74 = 1 then it goes to Al(ig, i3.,1;).
Point from zone A(7).7 = 1. 2, after one RG-iteration goes
to A(i —1).

Aliy, tg, 1) — Aliy — 1,49, i) — ...
— A1, 79, , i) — Aldg, i) — ...

— A(‘ig, 4. . Ek) —7 . A(O).



Structure of the blue subsets B(i1. 9, . ;) of the points
attracted to the o from the right is analogues to the red
subsets. All other points of D\ Dy lie on the boundaries
of zones Al(iq, 19, 1) and B(iq, 9, ,1;) . These boundaries
are invariant curves of the map R(«) or its degrees. Nu-
merically it is found that there are cycles of RG-map of the
order & for £ < 10 and they lie on the boundaries of sets

Ak kK, ...) and B(k, k. k. ...).



If p is some prime number, it is natural to define d-
dimensional hierarchical lattice as a lattice Tf of p-adic
fractional d-dimensional vectors. Every p-adic number @ €

(), can be represented in the form
€T :c_g-p_hr...+c_1p_1+co+clp+...:

where the coeflicients ¢; are integer numbers between 0 and

(p — 1), and c_; # 0 for some integer .



The norm ||, = p’ and the fractional part of 2 is defined

as
{2}, =cop™+ .. +c_p?

Fora = (xq.....: rq) € Q% wescet |x], = max Hx}, =

{x1}p, - - - {1d}p Then the discrete set T¢ = {z € Q%

r = {x},} can be viewed as a hierarchical lattice with the
size of elementary cell n = p? and with the hierarchical

distance dy(i, j) = |i — j|p, 7, J € 'T_f.



The continuous version of the fermionic hierarchical model
is described in terms of the four-component field ¢*(x) =
(1 (), 1(x), ¥g(), o)) over Q7. whose components
are generators of the Grassmann algebra. Let the Gibbs

state describing this field be specified by the Hamiltonian



H(" a;r,g) = Hy(vw" o) + [ L(W™(x); 7. g) dex,
Hy(u*; a) =

) [z =yl (Dy(x)i(y) + Po(x)ia(y)) dedy.

where dx is the Haar measure on Qd c(av) is some normal-
izing factor. The Lagrangian is
L™ (2);u.v) = u(@y(2)r(x) + o(x)va(2))+

(U ()91 (2) g () ().



The Gaussian Hamiltonian is invariant w.r.t.the group

Idu

of scaling transformations (S,(a)v*)(z) = |p (),

where av € R is the parameter of this group, p is any p-adic
number.

The value a = d+2 corresponds to the Laplace operator
in the Euclidean case or its p-adic analog.

[n the space of the Hamiltonians the transformation S, («)

acts by scaling the coupling constants:

Su(a) (1, v) = (|uale~u, | pf22~3).



The discretization of the field 1" is the field £ over Tﬁ
such that
&)= [V +a)x(x)de, jeT.

Here Tﬁ is a lattice of p-adic fractional vectors (hierarchical
lattice), v(x) - characteristic function of the ball ZS =

{x e Qp:|lz|l, < 1},



The discretization ¢* of the field (5,

1()*) () is hier-

archical block-spin renormalization group transtormation

over the field &%,

C*(j) = (r(@)€) () =p™* x© &),

i€B(j)
where B(j) = {i € T : ||i — p~'jl|, < p} are the elemen-

tary blocks in the hierarchical lattice.



Discretization ot the Gaussian field fermionic field *

with the Hamiltonian
H (W a;u,v) = Ho(¢v™ a0) + [ L(V™(x); u,v) de,
is a discrete fermionic field £*(7) with the Hamiltonian

H'(air,g) = Hy(a)+ S L(E():ir. g).

—7d
g€}
with the Gaussian part

Hy(&5 o) = = h(i, ;) (&) + E0&0)),

h(i, jia) = ei(a) (1= 0i) ||t — 71" + c1(a)di .



Thus, the discretization of the continuum field leads to
the hierarchical model with the same potential L(£*;r, g).
where the coupling constants r = r(u,v) and g = g(u, v)
of the lattice field depends on the coupling constants u and
v of the continuum model and are given by non-Gaussian
functional integral.

Denote the discretization transtormation

(u,v) = (r(u,v), g(u,v))

by P(a).



As we know, the transformation of the hierarchical RG
r(a) can be computed explicitly in the space of coupling
constants of the hierarchical model and is given by the map-
ping

R(a)(r,g) = (r'. )




Taking into account that r(«) is the discrete version of

scaling transformation S,-1(«v), we have

where

S(CE) ("EL, "U) _ (pa'—du:pﬁcx—3d_v)_



The mapping S(«) is given by the diagonal matrix whose
eigenvalues are the eigenvalues of the differential of R(«v)
at the origin. Hence we can treat the mapping P(«) as a
normalizing transformation to the mapping R(«) at zero
point an can find functional integral P(«) as a solution of

the classical functional equation.



For e« > 3d/2 both eigenvalues are more than 1, and
we are 1n the domain where the classical Poincare theorem
applies. According to to this theorem, the mapping P(«)
can be expanded in a power series in u and v that converges
for sufficiently small « and v provided « is a non-resonance

ralue.



The resonance values in the domain 3d/2 < o < 2d are
arranged in the discrete series

1
d, k=1.2,....
+2(2k—1)) _. 2,

| 2

ar = (;

I~

and exactly corresponds to the ultraviolet poles of p-adic
Feynman amplitudes. If d < a < 3d/2, the second eigen-
value is less then 1 and we are in the so-called Siegel do-
main. In that case any rational o 1s a resonance value
and the convergence of the mapping P(«a) requires some

Diophantine condition.



The renormalization procedure can be defined as the
mapping inverse to the normal mapping P(«). We can
restore coupling constants of the continuum theory from
the coupling constants of the discrete model using inverse

map P~1(a).



We can prove rigorously that discrete model 1s well de-
fined for the whole plane of coupling constants and almost
all values of av. But we can prove rigorously that continuum
model 1s well defined only in some small neighborhood of
trivial (zero) fixed point of renormalization group. In other
words the continuum model is related with the discrete

model as the normal form is related with the map.



We describe several new interesting phenomena discov-
ered in our model. Some of them can be generalized for the
other bosonic and fermionic models.

1. Interpretation of renormalization procedure as a nor-
mal form to the renormalization group transtormation at
zero fixed point. This interpretation is valid for the bosonic

hierarchical model .



2. New branch of fixed points and cycles of renormal-
ization group. It is possible to construct locally the non-
Gaussian branch of fixed points which bifurcates from the
Gaussian for models in the bosonic hierarchical and Eu-
clidean. Will be very interesting to find another branch of
fixed points in the fermionic Euclidean model.

3.Commutative relation between renormalization group
and Fourier transformations F' R(«) = R(2d — o) F'. This

relation is true for p-adic and Euclidean case.



4. "+"-branch of fixed points lies in the lower half-plane
for d < a < 3d/2. As it follows from the property 3 the
non-Gaussian branch of fixed points in the bosonic case is
well defined for av < d/2 and bifurcates from the fixed point
at infinity which corresponds to constant (zero)random field.

But what about d < o < 3d/27?



5. Special role of @ = d. It follows from the previous
commutative relation and the fact that all fixed points and
all cycles go to the singular point (-1.0) when « tends to
d. What is analog of the singular point in the Euclidean
models?

6.Similarity of (o — 3d/2)-expansions for critical expo-

nents in p-adic and Euclidean bosonic models .



7. If a — d/2, then "+7"-fixed point tends to infinity (
to the o-function). Note, that o-function fixed point cor-
responds to the "zero” automodel field. When o < d/2
"+ -fixed point belongs to the upper half-plane again. In
physical papers usually « is fixed and is equal to (d + 2).
In that case the Gaussian part of the Hamiltonian is given

by the Laplace operator.



Physicists consider (4 —d) -expansion and try to extrap-
olate the results of the expansion to the point d = 3 ( they
have a few lower order members of the series with zero con-
vergence radius). If we do the same in the (7, g)-space of
the coupling constants of the fermionic hierarchical model.
we will see that d = 4 is biturcation value of the param-
eter d and we can construct (4 — d)-expansion from the

Gaussian fixed point at the dimension d = 4.



From the explicit formulas for the "+ -fixed points it
follows that (o — 3/2d)-expansion and (4 — d)-expansion
describe the same non-Gaussian fixed point at the dimen-
sion d = 3. We have some arguments that the same is true
in the bosonic hierarchical model. How to verify physically
interesting conjecture about the equivalence of (av —3/2d)-

and (4 — d)-expansions in the Euclidean case?



“Gauss FP (d=4)

[ Non—Gauss FP
t Gauss FP (d=3)
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